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Abstract—Cohesive subgraph mining has received much at-
tention in the area of graph analysis. A k-truss, defined as a
subgraph where each edge is associated with at least k − 2
triangles, serves as a fundamental graph analysis tool. Among
all k-trusses, the kmax-truss with the maximum k value holds
significant importance in various practical applications such as
community search and keyword retrieval. Furthermore, it is also
closely related to many graph analysis problems, particularly
those computational complexity problems parameterized by k.
However, real-world graphs often exhibit large-scale characteris-
tics, making it impractical to fully load them into main memory.
In this paper, we investigate the problem of finding the kmax-
truss in external memory settings. To address this problem,
we propose an I/O efficient algorithm following a semi-external
model, which only allows node information to be loaded into main
memory. Our approach leverages greedy strategies and a binary
search framework to efficiently find the kmax-truss. Subsequently,
an elegant data structure is proposed to significantly reduce
I/O costs. Furthermore, to address dynamic graph updates, we
develop an I/O efficient kmax-truss maintenance algorithm based
on the local-first update technique. To evaluate the performance
of our algorithms, we conduct extensive experiments. The results
demonstrate the high efficiency and scalability of our algorithms,
which are at least two orders of magnitude faster in runtime
and at least one order of magnitude lower in terms of I/O costs
compared to the state-of-the-art solutions.

I. INTRODUCTION

Given a graph G = (V,E), a k-truss is referred to as a
subgraph where each edge is associated with at least k − 2
triangles. The kmax-truss, representing the trusses with the
maximum k value among all k-trusses [1], encapsulates the
central structure of the graph. Obviously, the kmax-truss, a
densely connected subgraph, retains its profound significance
as a critical subgraph within graph G, and it can be applied to
practical applications. For instance, in the field of community
search, the goal revolves identifying maximal communities
with maximum trussness that contain a set of query nodes
[2], [3]. Similarly, keyword retrieval aims to find a minimal
subgraph with maximum trussness covering the keywords [4].

Moreover, the kmax plays a pivotal role in shaping the
complexity analysis for various graph algorithms. It is widely
employed as a parameter in fixed-parameter tractable (FPT)
graph algorithms [5], where the computational complexity is
closely tied to the exponential function of kmax. Notably,
problems such as the maximum clique problem [6] and
clique listing problem [7] are parameterized by kmax. Thus,
computing the kmax of a graph G can be useful to predict
whether such FPT algorithms are tractable in G.

Due to its significance, a fundamental problem is to identify
the entire kmax-truss within the graph G. However, it is very
hard to estimate kmax without computing the entire kmax-truss.
All k-trusses exhibit a nested hierarchical structure, as depicted

in Fig. 1. If the entire kmax-truss subgraph is not computed,
we assume that it is possible to estimate either subgraph A or
B, where subgraph A contains some edges outside the kmax-
truss, B is a partial subgraph of kmax-truss (possibly is not the
entire of kmax-truss). It is easy to see that subgraph A does
not form a kmax-truss, as there exist edges with the support
less than kmax−2. Since subgraph B is possibly not the entire
kmax-truss, there may be edges with support less than kmax−2,
which results in subgraph B possibly not being a kmax-truss.
In addition, it is very difficult to estimate a subgraph B that
is exactly a kmax-truss. To solve this problem, the existing
studies are mainly based on peeling techniques [8]–[10].
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These existing algorithms are tailored for in-memory pro-
cessing to compute kmax-truss. However, with the continuous
growth in graph sizes, fully loading them into limited memory
becomes impractical, making these algorithms incapable of
handling large graphs. To address this limitation, Wang et al.
[11] first proposed an external memory algorithm, called
Bottom-Up, by performing complete truss decomposition to
obtain the kmax-truss. They further enhanced Bottom-Up
through the integration of the h-index technique, resulting in
the state-of-the-art algorithm Top-Down. Both of these algo-
rithms mainly follow a peeling-based idea, briefly summarized
as follows: (1) the input graph is partitioned into multiple local
graphs with each local graph loaded into memory for k-truss
calculations; (2) the edges connecting these local graphs are
reconstructed to form a new graph, and the process returns to
(1) iteratively until all edges have been processed.

However, the Top-Down algorithm for kmax-truss compu-
tation, suffers from three notable drawbacks: (1) It requires
too many graph partitions to yield results, and each partition
incurs read and write I/O overhead. Moreover, the vertex-based
uniform partitioning approach leads to imbalance regarding the
size of the graph composed of the set of vertices loaded into
memory, potentially exceeding the available memory capacity;
(2) The technique employed to compute the upper bound of the
k-truss corresponding to each edge is highly time-consuming
and results in significant I/O overhead. Additionally, the
comparatively loose upper bound can further lead to excessive
I/O overhead incurred by Top-Down to obtain the final result;
(3) The Top-Down algorithm cannot efficiently maintain the



kmax-truss when the networks are dynamically updated. When
an edge is inserted or deleted, it must re-compute the kmax-
truss from scratch.

To address these drawbacks, we present novel I/O efficient
algorithms for kmax-truss computation, and for the first time,
develop the efficient algorithm for kmax-truss maintenance
under external memory settings. Specifically, we first develop a
binary search method and a greedy pruning technique. Then,
we design a novel data structure to minimize the read and
write costs associated with updating edge information on disk.
Subsequently, a novel algorithm for the maintenance of kmax-
truss is proposed by using local-first update technique. Finally,
we conduct extensive experiments to evaluate our proposed
algorithms using 171 graphs, and the results demonstrate
the efficiency, scalability, and effectiveness of the proposed
algorithms. Below, we summarize our contributions as follows.
Novel I/O efficient kmax-truss computation algorithms.
First, we propose a greedy strategy to identify a local k′max-
truss and adopt a binary search framework to reduce I/O over-
head. Then, incorporating upper and lower bound techniques
to obtain a compact binary search interval which enhances
algorithm efficiency. Specifically, the upper bound is based
on the k-core technique and the lower bound is based on the
theory of average support of the edges. Finally, we efficiently
obtain the kmax-truss based on the local maximum k-truss
using the peeling method.
Novel structure to largely reduce I/O. We combine both
disk-based linear-heap and memory-based dynamic-heap into a
composite data structure, called LHDH. The disk-based linear-
heap, which stores all edges on disk in increasing order of
support, enables efficient loading and writing of edges. Since
we observe that, some edges need to be frequently updated
during the search, we utilize the memory-based dynamic-heap
to hold the frequently updated edges in memory. As a result,
by utilizing both components, the highly innovative LHDH
structure effectively reduces I/O overhead.
The first I/O efficient kmax-truss maintenance. We adopt
the peeling-based technique to handle an edge insertion or
deletion and update the kmax-truss accordingly. In our ap-
proach, we employ a two-tiered update strategy. Initially, we
employ a local-first update technique to update potentially
affected areas. As the extent of the affected area surpasses a
threshold, we seamlessly transition to a global-second update
technique. In the global update phase, we further optimize
the process by applying the core pruning technique to filter
candidate nodes, subsequently recomputing the kmax-truss on
this refined set of nodes.
Extensive experiments. We systematically analyze the value
of kmax of 171 graphs and confirm that the value of kmax for
most real-world graphs is much smaller than the degeneracy
value, which means it can obtain a tighter bound on the
time complexity for the clique listing problem. Besides, we
conducted extensive experiments on five medium-sized graphs
and five massive-sized graphs to evaluate the performance of
our proposed algorithms. The experimental results show that:
(1) the proposed SemiLazyUpdate, kmax-truss computation
method, is two orders of magnitudes faster than the state-of-
the-art algorithm Top-Down [11], both I/O costs and memory

TABLE I
FREQUENTLY USED NOTATIONS

Notation Description
G = (V,E) an undirected and unweighted graph
V (G), E(G) the vertex/edge set of G
Nv(G) the set of neighbors of a vertex v in G
dmax(G) the maximum vertex degree in G
△uvw a triangle formed by u,v and w
sup((u, v)) the support of edge e = (u, v) in G
kmax the maximum trussness of the edges in G
core(v) the coreness of v in G
cmax the maximum coreness of vertex in G

§k△(G) the number of triangles containing edges with support from
0 to k in G

Tedge(G) the storage of all edges in non-decreasing order of support
Ek

sup(G) the set of edges with support k in G
Gcmax ,cmax-core the subgraph of G induced by the vertices with maximum

coreness
△k

(u,v) {△uvw : min{sup((u,w)), sup((v, w))} ≥ k − 2}

costs; (2) the kmax-truss maintenance method is two orders
of magnitudes faster than the method presented in [12] with
the ability of processing large-size graphs in less than 10
seconds; (3) the lower bound is closer to the kmax, indicating
the effectiveness of our greedy strategy. Additionally, we also
conduct two case studies to demonstrate the effectiveness of
our kmax-truss compared to other models.

II. PRELIMINARIES

Let us consider an undirected and unweighted graph G =
(V,E), where V (G) represents the set of vertices and E(G)
represents the set of edges. The graph G is composed of n =
|V | vertices and m = |E| edges. We define the set of neighbors
of a vertex v by Nv(G), i.e., Nv(G) = {u ∈ V : (v, u) ∈ E} ,
and the degree of v by dv(G) = |Nv(G)|. We use dmax(G) to
denote the maximum vertex degree in G. Given a set of nodes
V ′ ∈ V , the subgraph induced by V ′ is defined as G(V ′) =
(V ′, E′), where E′ = {(u, v)|(u, v) ∈ E, u ∈ V ′, v ∈ V ′}.

Nodes u, v, w form a triangle denoted as △uvw due to their
pairwise connections. Furthermore, we denote the total number
of triangles in graph G as △G and the set of all distinct
triangles in G as T (G).

Definition 1 (Support): The support of an edge e = (u, v)
in G is the number of triangles containing e, defined as
sup(e,G) = |{△uvw : w ∈ V }|. When the context is clear,
we simplify sup(e,G) as sup(e).

Definition 2 (k-Truss [1]): A k-truss Tk = (VTk
, ETk

) (k ≥
2) is a maximal connected subgraph of G such that for each
edge e ∈ Tk, sup(e, Tk) ≥ k − 2.

Definition 3 (Trussness): The trussness of an edge e ∈ E(G)
is defined as τ(e) = max{k : e ∈ ETk

}.
Definition 4 (k-Class): The k-class of G is defined as {e :

e ∈ E, τ(e) = k}.
Definition 5 (kmax-Truss): The kmax-truss of G is defined

as {e : e ∈ E, τ(e) = kmax}.
kmax denotes the maximum trussness of the edges in G.
There are very large graphs in the real world, e.g. Face-

book’s social network [13] can reach 2 billion vertices and 400
billion edges. In-memory graph algorithms cannot handle such
large graphs. Therefore, external-memory graph algorithms are
needed to handle such large graphs, and we formally define
our problem in this paper below.
Problem definition. The objective of this study is to identify
and maintain the kmax-truss of a graph G. Recognizing that



real-world graphs are dynamic, we explore strategies that allow
for the maintenance of the kmax-truss in dynamic graphs.

Example 1: Let us consider the graph G depicted in Fig.
2. The subgraph enclosed by the shaded region represents the
kmax-truss with a trussness of 4 for each edge. Conversely, the
trussness for the edges outside the shaded region is 3. Hence, it
is evident that kmax is 4. When an edge (v1, v5) is inserted in
G, it can be observed that each edge in the subgraph induced
by {v1, v2, v3, v4, v5} has a trussness of 5. Thus, the subgraph
is now a kmax-truss with kmax = 5.
I/O model. Let M be the size of main memory and B be
the disk block size (B < M). Files on a disk are organized
in blocks and each block size is B bytes. An I/O operation
will read/write one block of size B from disk/memory into
memory/disk. The I/O cost of an algorithm represents the total
number of read and write I/Os. Thus, reading/writing a piece
of data of size N from/into disk requires (N/B) I/Os [14].

Currently, the semi-external model is widely adopted to
design external-memory algorithms. The semi-external model
assumes that the main memory can hold all nodes while
cannot store all edges. For instance, previous studies have
also used a semi-external model to address k-core related
problems in an I/O-efficient manner [15], [16]. The semi-
external model enables 128 GB memory of a typical server to
efficiently process large graphs with up to 10 billion vertices,
encompassing the majority of graphs present in publicly
available real-world graph datasets.
Graph storage. In this paper, we store G on the disk
in a manner similar to previous methods [15] [16]. We
organize G by storing its adjacency lists, represented as
{Nv1(G), Nv2(G), · · · , Nvn(G)}, in a sequential edge file on
the disk. The node file stores information about the nodes,
including their offsets and degrees. To load the neighbors of a
node vi, we first access the node file for its offset and degree
and then load neighbors of vi from the edge file.

III. Kmax-TRUSS ALGORITHMS FOR STATIC GRAPHS

In this section, we first review the existing solutions. Current
methods predominantly rely on truss decomposition, necessi-
tating the computation of the trussness for each edge in the
graph. The state-of-the-art algorithm for truss decomposition
under external memory is based on the peeling method, as
proposed by [11]. They also proposed an advanced efficient
I/O algorithm, named Top-Down, which can compute the
kmax-truss. However, the Top-Down algorithm is deficient in
three aspects as mentioned in the introduction.

To address the above limitations, we introduce a series of
novel semi-external algorithms for kmax-truss computation.
We first propose a basic algorithm, SemiBinary, which uses
a binary search approach. Then, we present SemiGreedyCore,
which utilizes a combination of k-core pruning and greedy
strategies. Finally, we present SemiLazyUpdate, an algorithm
utilizing a newly designed data structure, implemented with
a lazy update strategy to minimize I/O overhead in updating
edge information on the disk.

A. The SemiBinary algorithm
In this paper, we propose a semi-external algorithm utilizing

the binary concept to efficiently identify the kmax-truss of a

given graph G, thus avoiding the costly process of repeatedly
scanning G to generate the subgraph H . Specifically, our
approach involves establishing a lower bound lb and an upper
bound ub of kmax. By conducting a careful binary search
within the interval of [lb, ub], our algorithm is capable of
rapidly determining the value of kmax.
Bounds of kmax-truss. The previous lower bound theory
presented in [10] states that kmax ≥ △G

m + 2, which is an
instance of the extension of Nash-Williams’ result [17] to
trussness. However, this lower bound is too loose. To address
this issue, we propose a tighter lower bound, which is further
used in the SemiBinary algorithm to improve the efficiency of
computing the kmax-truss of a graph G.

Let △k
sup(G) represent the set of triangles in G that contain

edges with support k, i.e., △k
sup(G) = {△uvw : △uvw ∈

T (G),∃e ∈ E(△uvw), sup(e) = k}. We use §k△(G) to
denote the number of triangles in G that contain edges with
support from 0 to k, i.e., §k△(G) =

∑k
i=0 |△i

sup(G)|. Denote
by Ek

sup(G) the set of edges with support k in G, i.e.,
Ek

sup(G) = {e : e ∈ E(G), sup(e) = k}. We use §kE(G)
to denote the number of edges with support from 0 to k, i.e.,
§kE(G) =

∑k
i=0 |Ei

sup(G)|.
Lemma 1 (Lower Bound): Given an undirected graph G

containing kmax-truss, let |E0
sup(G)| be the total number of

edges with support of 0 in G. Then kmax ≥ 3 △G

m−|E0
sup(G)|+2.

Furthermore, when edges with support less than k are removed

from G, kmax ≥ 3
△G−§k−1

△ (G)

m−§k−1
E (G)

+ 2.
All missing proofs of the Lemma and algorithmic complex-

ity can be referenced in the full version of this paper [18].
Proof: Assume that the kmax-truss is G itself, then

3△G =
∑

e∈E sup(e), each edge has a support is kmax − 2,
it follows that m(kmax − 2) = 3△G. Otherwise, when the
kmax-truss is not G itself, the support of m edges cannot
reach (kmax − 2). Note that edges with support 0 are not
considered. We obtain that (m−|E0

sup(G)|)(kmax−2) ≥ 3△G

i.e., kmax ≥ 3 △G

m−|E0
sup(G)|+2. In addition to this, when edges

with support less than k are removed from G, the number of
triangles decreases

∑k−1
i=0 |△i

sup(G)| and the number of edges
decreases §k−1E (G), therefore, based on (m−E0

sup(G))(kmax−
2) ≥ 3△G, it follows that (m − §k−1E (G))(kmax − 2) ≥
(3△G − 3§k−1△ (G)). Thus, kmax ≥ 3

△G−§k−1
△ (G)

m−§k−1
E (G)

+ 2. □

Lemma 1 implies that 3 △G

m−|E0
sup(G)| + 2 as a initial lower

bound in our search for the kmax-truss. Subsequently, when
some edges are removed, the lower bound is dynamically

adjusted to 3
△G−§k−1

△ (G)

m−§k−1
E (G)

+ 2.
Lemma 2 (Upper Bound): Given an undirected graph G

containing kmax-truss, we use the maximum support among
all edges of the graph G as an upper bound, i.e., ub =
max{sup(e) : e ∈ E(G)}+ 2.
Key idea of SemiBinary. The main idea behind SemiBinary
is to apply a binary search in [lb, ub] to find the exact value
of kmax. The algorithm tests if G contains a mid-truss where
mid = lb+ub

2 . If there exists a mid-truss in G, then let lb
be mid + 1; otherwise, we set ub to mid − 1. To determine
the presence of a mid-truss in G, we iteratively remove edges



Algorithm 1: SemiBinary
Input: G = (V,E) in the disk
Output: The kmax-truss of G

1 Compute sup(e) of each edge in G with a semi-external method [19];
2 lb← 3

△G
m−|E0

sup(G)|
+ 2; ub← max{sup(e) : e ∈ E(G)}+ 2;

3 Sort all edges of G in non-decreasing order of support and store them in
Tedge(G) (merge sort);

4 pre(i)← 0 for all 0 ≤ i ≤ (ub + 1);
5 ComputePrefix(E(G), pre, lb, ub);
6 while lb ≤ ub do
7 mid← ⌊(lb + ub)/2⌋; lmid← mid;
8 Let H be the subgraph from pre(mid) to pre(ub+ 1) in Tedge(G);
9 Compute sup(e) of each edge in H with a semi-external method;

10 Sort all edges of H in non-decreasing order of their support (bin sort);
11 while ∃e = (u, v) of H s.t. sup(e) < mid− 2 do
12 (u, v) = argmin

e∈E(H)

sup(e);

13 Load Nu(H) and Nv(H) from disk;
14 for w ∈ Nu(H) ∩Nv(H) do
15 sup((u,w))← sup((u,w))− 1;
16 sup((v, w))← sup((v, w))− 1;
17 Reorder (u,w) and (v, w) according to their new support;

18 Remove (u, v) from H;

19 if not all edges in H are removed then

20 kmax ← mid; lb← 3
△H−§mid−3

△ (H)

|E(H)|−§mid−3
E

(H)
+ 2;

21 if lb < mid + 1 then lb← mid + 1;
22 mid← ⌊(lb + ub)/2⌋;
23 lmid← mid;
24 goto line 11;

25 else
26 ub← mid− 1;

27 Output the edges in H whose trussness is kmax as kmax-truss;
28 Procedure ComputePrefix(E, pre, lb, ub)
29 cnt(i)← 0 for all 0 ≤ i ≤ (ub + 1);
30 For each e ∈ E do cnt(sup(e))← cnt(sup(e)) + 1;
31 For i = 1 to (ub + 1) do pre(i)← pre(i− 1) + cnt(i− 1);

with support less mid− 2 until all remaining edges have the
support of at least mid − 2. If all edges are removed, then
G lacks a mid-truss. Otherwise, the remaining edges form a
mid-truss.

Detailed implementation of algorithm. Algorithm 1 shows
the pseudo-code of SemiBinary. At the beginning, we compute
the support of each edge in G, which makes it easy to get the
upper and lower bounds through the by-products. After that,
we apply an external memory merge sort algorithm to sort
the edges of G in non-decreasing order of support and store
them in Tedge(G) (line 1-3). Then we use pre(i) to record the
starting position of a batch of edges in Tedge(G) with support
i (line 28-31).

Subsequently, the algorithm invokes a binary search proce-
dure to compute the kmax-truss. We form a subgraph H from
the edges with support not less than mid − 2 in Tedge(G).
Since the edges in Tedge(G) are kept in order, it is sufficient
to read them sequentially. We compute the support of each
edge in H , and sort all the edges in non-decreasing order of
their support with the bin sort method. The sorted edges are
then stored in Adisk, similar to how the sorted degree array is
kept in [20] (line 8-10). We iteratively delete all edges with
support less than mid− 2 in the Adisk. After removing edge
(u, v), the support of edges forming a triangle with (u, v)
must be decremented and the position of these edges will be
updated in Adisk. Instead of physically removing edge (u, v)
from H , we simply move the pointer in Adisk to the next edge

with the lowest support (line 11-17). If a mid-truss exists in
H , it is updated directly on H without having to reselect the
edges from Tedge(G) to generate the subgraph (line 18-24).
Otherwise, we would have to recompute the subgraph after
updating ub to identify the presence of the mid-truss (line
25-26).

Example 2: Consider the graph G in Fig. 2. We observe
that △G is 18 and the max support is 4, thus SemiBinary
sets lb = 4 and ub = 6. In the binary search phase,
SemiBinary initializes mid to 5 and scans T edge(G) in
sequence to identify edges with support no less than 3,
thereby generating a subgraph H consisting of these edges
such as {(v2, v3), (v2, v4), (v3, v4), (v4, v5), (v5, v8)}. Subse-
quently, SemiBinary aims to locate a 5-truss (i.e., mid = 3)
in subgraph H by removing edges with support smaller than
3 iteratively. There are no remaining edges, so there is no 5-
truss. Therefore, SemiBinary updates ub = 4 and mid = 4
for the next iteration. The algorithm rescans T edge(G) in
sequence to identify edges with support no less than 2, thereby
generating a subgraph H . All edges with support less than 2
in the subgraph H are first removed, and then the result is a
4-truss represented by the shaded area. Following this stage,
SemiBinary terminates and kmax = 4.

Theorem 1: The I/O complexity of Algorithm 1 is
O(max( |E(G)|dmax(G)

B , logub2 |E(H)|dmax(H))), and the CPU
time complexity of Algorithm 1 is O(m1.5) [11]. Algorithm
1 only requires O(n) memory.

Proof: Only arrays of node-related information are held
in memory, hence, its memory overhead is O(n). The I/O
overhead consists of three main components, 1) computing
the support of all edges, 2) sorting these edges, and 3)
deleting edges to update the information of other edges.
First, computing the support of each edge in G requires
O( 2|E(G)|

B +
∑

x∈V (
∑

y∈N(x) N(y)

B )) ≤ O( |E(G)|(dmax(G))
B )

I/Os. Second, sorting edges of G takes O( |E(G)|
B logM

B

|E(G)|
B ),

as it takes O(NB logM
B

N
B ) I/Os for sorting N numbers using

the external sorting algorithm [21]. Third, in the binary search
process, it firstly generates a subgraph H saved in the disk,
it takes O( |E(H)|

B logM
B

|E(H)|
B ) I/Os. Then, computing the

support of each edge in H requires O( |E(H)|(dmax(H))
B ) I/Os.

Sorting edges in H by support in bin sort method will take
O(|E(H)|) I/Os. Finally, it needs to determine whether a
mid-truss exists in H . Therefore, in each iteration (line 10-
16), it takes O(d(x)+d(y)

B + |N(x)∩N(y)|) I/Os. In the worst
case, it needs to traverse all the edges in H , which causes
O(|E(H)|(d(x)+d(y)

B + |N(x)∩N(y)|)) ≤ O(E(H)dmax(H))
I/Os. In summary, The dominant I/O overheads arise from
computing the support of each edge in the entire graph
and removing each edge during the binary search. Since
it is not possible to judge the size of the subgraph
H generated during the binary search with respect to
the size of the entire graph, the total I/O overhead is
O(max( |E(G)|dmax(G)

B , logub2 |E(H)|dmax(H))). Meanwhile,
ub = max{sup(e) : e ∈ E(G)} + 2. As a result, the CPU
time complexity for Algorithm 1 is the time complexity of
truss decomposition O(m1.5) [11]. □

Remarks. Although the support of some edges is repeatedly



computed, our algorithm is designed to be external memory
friendly. If an additional external memory-based index table
is introduced to eliminate the repeated computation, more I/O
overhead will be incurred, which results in lower performance
of the algorithm.

B. The SemiGreedyCore algorithm
Note that the upper bound and the lower bound in Algorithm

1 are not tight, resulting in several implications. Firstly, the
looser upper bound leads to more iterations in the binary
search. Secondly, the looser lower bound leads to a large num-
ber of useless computations. To address the aforementioned
challenges, we propose two optimizations that result in tighter
upper and lower bounds. These refinements contribute to the
enhanced performance of the algorithm. We begin with an
introduction to the concept of k-core.

Definition 6 (k-Core [22]): A k-core is a maximal subgraph
of G, denoted by Gk, such that for ∀v ∈ VGk

, dv(Gk) ≥ k.
Definition 7 (Coreness): The coreness of a vertex v ∈ V (G)

is defined as core(v) = max{k : v ∈ V (Gk)}.
We use the notation cmax to represent the maximum

coreness of a vertex in the graph G.
Core-based reduction. In order to improve the efficiency of
the algorithm, it is crucial to minimize the number of nodes
that are not included in the kmax-truss. It is worth noting that
a k-truss is a (k − 1)-core, whereas a (k − 1)-core is not
necessary to be a k-truss. Hence, based on this relationship, we
can effectively filter out nodes with lower coreness during the
process of searching for the kmax-truss. Moreover, the coreness
can assist in designing a tighter upper bound, as demonstrated
in Lemma 3. Based on the above observations, we first perform
a core decomposition to compute the coreness of each node
in G in a semi-external manner [15].

Lemma 3 (Upper Bound): Given a graph G, let ub(u,v)
be the upper bound of edge (u, v) in G. We have ub(u,v) =
min(core(u), core(v)) + 1. Thus, the upper bound of the
kmax-truss in G is that ub = max{ub(u,v) : (u, v) ∈ E(G)}.

Proof: If an edge (u, v) is in the kmax-truss,
core(u) = k1, core(v) = k2 and τ(u,v) = k3, we have
k3 ≤ min(k1, k2) + 1. Assuming that, on the contrary, we
have k3 > min(k1, k2) + 1, i.e., k3 ≥ min(k1, k2) + 2.
According to the Definition 2, edge (u, v) has at least
min(k1, k2) common neighbors, at this point vertex
u has at least min(k1, k2) + 1 neighbours. We have
core(u)′ = min(k1, k2) + 1 > k1, which does not match
the original core(u) = k1. Therefore, k3 > min(k1, k2) + 1
leading to a contradiction. □
Greedy strategy for kmax. Initially, our approach involves
identifying the local k′max-truss. For this purpose, we adopt a
greedy strategy of selecting nodes with the highest coreness
cmax, which collectively form the subgraph known as the
Gcmax . We employ the Gcmax as a local graph for the
extraction of the local k′max-truss. The rationale behind our
greedy selection of the cmax-core lies in the strong correlation
between the Gcmax and the kmax-truss. The relationship
between the Gcmax

and the kmax-truss can be analyzed in two
different cases.
Case-1 (kmax-truss ⊆ Gcmax

): The Gcmax
of a graph G

contains all nodes and edges of the kmax-truss. Moreover, due

to the fact that kmax-truss is equivalent to a (kmax − 1)-core,
it follows that kmax − 1 = cmax.
Case-2 (kmax-truss ⊊ Gcmax ): The fact that there are nodes
and edges in kmax-truss that are not in Gcmax

means that they
exist in k-core (k < cmax). It can be deduced that kmax−1 <
cmax.

In the study by Li et al. [16], it was demonstrated that
the Gcmax is often smaller in size compared to the original
graph, as evidenced by their experimental results. Therefore,
we leverage the SemiBinary approach to compute the local
k′max-truss on the Gcmax , which incurs less overhead compared
to performing the computation on the original graph. However,
it is not guaranteed that the local k′max-truss corresponds to
the kmax-truss of the original graph. The presented Case-2
demonstrates that Gcmax

comprises only a subset of vertices
from kmax-truss, leading to a local k′max that is smaller than
kmax. Consequently, vertices that do not satisfy Lemma 4 are
eliminated, enabling rapid identification of kmax-truss.

Lemma 4: Given an undirected graph G, we have VH =
{u ∈ V |core(u) ≥ k′max − 1}, H is a subgraph composed of
VH , thus, kmax-truss ⊆ H .

Proof: For Case-1, when k′max = kmax, it follows that H
is also a Gcmax

, and the kmax-truss must be in H . In Case-2,
where k′max < kmax, nodes with a coreness less than k′max−1
are definitely not part of the k′max-truss. Therefore, these nodes
must not be part of the kmax-truss. In contrast, the kmax-truss
is in the subgraph H composed of nodes with a coreness of
no less than k′max − 1. □

By the greedy strategy and the proof of Lemma 1, we can
obtain a tighter lower bound.

Lemma 5 (Lower Bound): Given an undirected graph G, let
k′max-truss be the local maximum k-truss in Gcmax

. We have
lb ≥ k′max.
Detailed implementation of algorithm. Algorithm 2 shows
the pseudo-code of SemiGreedyCore. Firstly, we conduct core
decomposition using a semi-external method [15] to extract
the Gcmax from the graph G (line 1-3). Subsequently, we
compute the support of each edge in the Gcmax

and employ
an external merge sort algorithm to arrange these edges in
non-decreasing order of support. These sorted edges are then
stored in T edge(Gcmax

). Additionally, we use pre(i) to store
the starting position of a batch of edges with the same support
i in T edge(Gcmax). By applying Lemma 1 and Lemma 3, we
readily obtain the values of lb and ub (line 4-8).

The local k′max-truss can be found from Gcmax in the same
way as line 6-26 of Algorithm 1. It is important to note that
the local k′max-truss from Gcmax

may not be the kmax-truss
of G, but the k′max is very close to the kmax. On this basis,
the lower bound lb is updated (line 9-10). Subsequently, we
need to select those nodes whose coreness is no less than
lb− 1. These nodes form the subgraph H ′. We also compute
the support of each edge in H ′, then sort all the edges in non-
decreasing order of their support with bin sort. The sorted
edges are then stored in Adisk (line 11-14). In the end, we
iteratively remove the edges in H ′ with support less than or
equal to lb − 2. When removing (u, v), we also decrement
the support of all other edges that form a triangle with (u, v),
and update their new positions in the Adisk. This iteration



Algorithm 2: SemiGreedyCore
Input: G = (V,E) in the disk
Output: The kmax-truss of G

1 Compute coreness of each node in G [15];
2 Vcmax ← {v ∈ V |core(v) = cmax};
3 Denote by Gcmax the subgraph of G induced by Vcmax ;
4 Compute sup(e) of each edge in Gcmax with a semi-external method;
5 Sort all edges of Gcmax in non-decreasing order of their support and store

them in Tedge(Gcmax ) (merge sort);

6 lb← 3
△Gcmax

|E(Gcmax)|−E0
sup(Gcmax)

+ 2; ub← cmax + 1;

7 pre(i)← 0 for all 0 ≤ i ≤ (ub + 1);
8 ComputePrefix (E(Gcmax ), pre, lb, ub);
9 line 6-26 of Algorithm 1; /* get local k′

max-truss from Gcmax */;
10 lb← k′

max;
11 Vnew ← {v ∈ V |core(v) ≥ lb− 1};
12 Denote by H′ the subgraph of G induced by Vnew ;
13 Compute sup(e) of each edge in H′ with a semi-external method;
14 Sort all edges of H′ in non-decreasing order of their support (bin sort);
15 while ∃e = (u, v) of H′ s.t. sup(e) ≤ lb− 2 do
16 (u, v) = argmin

e∈E(H)

sup(e);

17 Load Nu(H
′) and Nv(H

′) from disk;
18 for w ∈ Nu(H

′) ∩Nv(H
′) do

19 sup((u,w))← sup((u,w))− 1;
20 sup((v, w))← sup((v, w))− 1;
21 Reorder (u,w) and (v, w) according to their new support;

22 Remove (u, v) from H′;

23 if not all edges in H′ are removed then
24 lb← lb + 1;
25 goto line 15;

26 kmax ← lb;
27 Output the edges in H′ whose trussness is kmax as kmax-truss;
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Fig. 3. The running example

continues until all edges in H ′ with support less than or equal
to (lb−2) have been removed. In this way, we find the kmax-
truss in G (line 15-26).

Example 3: Consider the graph G in Fig. 3. The coreness
of the orange node is 3 and the coreness of the blue node is 4.
It is easy to see that the subgraph formed by the blue nodes is
Gcmax . k′max-truss (i.e., k′max = 4) computed on Gcmax using
SemiBinary is the subgraph formed by {v1, v2, v3, v4, v5} (line
1-9). Meanwhile, lb was updated to k′max (i.e., lb = 4). Next,
all nodes with a coreness no less than lb − 1 were selected
from the G, as shown in the shaded area (line 10-14). Iterate
to remove all edges with support less than lb − 2. No edges
remain and the final kmax is 4. So the kmax-truss is the shaded
area covered subgraph.

Theorem 2: Let l be the number of iterations of core
decomposition [15]. The I/O complexity of Algorithm 2
is O(max(logub2 |E(Gcmax

)|dmax(Gcmax
), |E(H ′)|dmax(H

′)),
and the CPU time complexity of Algorithm 2 is O(|EH′ |1.5).
Algorithm 2 requires O(n) memory.

Proof: Algorithm 2 has the same space complexity as Al-
gorithm 1. I/O overhead mainly consists of three components:
1) Core decomposition. 2) Discovering local k′max-truss from
Gcmax

. 3) Finding kmax-truss in the subgraph H ′ generated
after updating the lower bound with k′max. Firstly, it performs
core decomposition, which takes O( l×(m+n)

B ) I/Os. Secondly,

Algorithm 3: SemiLazyUpdate
Input: G = (V,E) in the disk
Output: The kmax-truss of G

1 lines 1-8 of Algorithm 2;
2 while lb ≤ ub do
3 mid← ⌊(lb + ub)/2⌋; lmid← mid;
4 Let H be the subgraph extracted from Tedge(Gcmax );
5 Compute sup(e) of each edge in H with a semi-external method;
6 Initialize linear-heap (lheap) and dynamic-heap (dheap);
7 while ∃e = (u, v) of H s.t. sup(e) < mid− 2 do
8 DeleteEdgeKernal (H, lheap, dheap);
9 Remove e from H;

10 if not all edges in H are removed then

11 kmax ← mid; lb← 3
△H−§mid−3

△ (H)

|E(H)|−§mid−3
E

(H)
+ 2;

12 if lb < mid + 1 then lb← mid + 1;
13 mid← ⌊(lb + ub)/2⌋;
14 lmid← mid;
15 goto line 7;

16 else
17 ub← mid− 1;

18 lines 10-13 of Algorithm 2;
19 Initialize linear-heap (lheap) and dynamic-heap (dheap);
20 while ∃e = (u, v) of H s.t. sup(e) ≤ lb− 2 do
21 DeleteEdgeKernal (H, lheap, dheap);
22 Remove e from H;

23 if not all edges in H are removed then
24 lb← lb + 1;
25 goto line 15;

26 kmax ← lb;
27 Output the edges in H whose trussness is kmax as kmax-truss;

the local k′max-truss is discovered within Gcmax , and the I/O
overhead is computed in a similar manner as in Algorithm 1,
with a complexity of O(logub2 |E(Gcmax

)|dmax(Gcmax
)) I/Os.

Thirdly, based on the local k′max, it constructs the subgraph
H ′, then iteratively remove the unsatisfied edges. This pro-
cess will take O( |E(H′)|(1+dmax(H

′))
B + |E(H′)|

B logM
B

|E(H′)|
B +

|E(H ′)|(dmax(H
′)

B + dmax(H
′)))) ≤ O(|E(H ′)|(dmax(H

′))))
I/Os. Since the Gcmax

⊆ H ′, the I/O overhead associated
with Gcmax

has a logub2 factor. Therefore, it is difficult to
determine whether the I/O overhead incurred at Gcmax or H ′

is greater. As a result, the I/O complexity of Algorithm 2
is O(max(logub2 |E(Gcmax)|dmax(Gcmax), |E(H ′)|dmax(H

′)).
The largest subgraph for performing triangle enumeration
is H ′, thus the CPU time complexity of Algorithm 2 is
O(|E(H ′)|1.5) [11]. □

Note that Algorithm 2 is pruned by the k-core based
technique, which can significantly reduce the useless nodes.
Consequently, Algorithm 2 requires triangle listing not in
G but in subgraph Gcmax compared to Algorithm 1, which
greatly reduces I/O overhead. Besides, the tighter lower bound
and upper bound also contribute significantly to performance
improvement.

C. The SemiLazyUpdate algorithm

Algorithms analysis. We notice that the deletion of edge is
a frequent operation in both Algorithm 2 and Algorithm 1.
The tight inter-connections among edges via triangles cause
a ripple effect when an edge is deleted. The support of the
two edges forming a triangle with the deleted edge needs to
be updated, resulting in changes to their positions in Adisk.
For example, consider a scenario where an edge (u, v) has



Algorithm 4: DeleteEdgeKernal
Input: G = (V,E), lheap and dheap

1 (u, v) = argmin
e∈E(G)

sup(e);

2 Load Nu(G) and Nv(G) from disk;
3 for w ∈ Nu ∩Nv do
4 if ∃(u,w) /∈ dheap then
5 if sup((u,w)) > sup((u, v)) then
6 Take out (u,w) from lheap;
7 Put (u,w) into dheap;
8 sup((u,w))← sup((u,w))− 1 in dheap;

9 else
10 if dheap.getSup((u,w)) ̸= sup((u, v)) then
11 sup((u,w))← sup((u,w))− 1 in dheap;
12 Adjust position of (u,w) in dheap;

13 Replace (u,w) with (v, w) and repeat line 4-12.

14 if dheap.size() > capacity then
15 for i = 1 to capacity do
16 (u, v)← dheap.top(); dheap.pop();
17 Insert (u, v) into the position of sup((u, v)) in lheap;

18 while dheap.size() > 0 and lowest sup of lheap ≥ sup(dheap.top())
do

19 (u, v)← dheap.top(); dheap.pop();
20 Insert (u, v) into front of lheap;
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Fig. 4. Demostration of linear-heap on the left graph

higher support compared to some adjacent edges, which have
lower support. In the traditional approach, deleting adjacent
edges requires frequent access to (u, v), updating its support
and position on disk, and incurring intolerable I/O overhead.

To address this issue and reduce the costly overhead of edge
deletion, we have devised an efficient data structure based on
a combination of disk and memory.
The I/O-optimal structure: LHDH. The implementation
of this structure involves two components: 1) a disk-based
linear-heap, inspired by [23], which stores all edges in non-
decreasing order of support, and 2) a memory-based dynamic-
heap structure that handles frequently updated edges. By
combining these two structures, we achieve lazy updates in
the edge deletion process. This approach eliminates the need
for triggering an I/O overhead for each update. Next, we will
describe these two structures in detail.

linear-heap. Edges are efficiently stored in a linear-heap,
arranged in increasing order of support, as illustrated on
the left side of Fig. 5. To optimize the loading and writing
process, edges with the same support are linked together in
a doubly-linked format, as shown in Fig. 4. Given that the
maximum support of edges is less than n, it becomes feasible
to retain the information of the head node in a doubly-linked
table in memory. This arrangement enables effective access to
individual edges and efficiently writes it back to disk.

dynamic-heap. The dynamic heap is based on a min-heap.
The frequently updated edges in this heap are ordered by
support, with lower support edges placed at the top and higher
support edges at the bottom. When an edge is updated, its
support is decreased by one, and its position is dynamically
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adjusted upwards in the heap based on the heap ordering. As
a result, the edge with the smallest support is consistently
popped from the top of the heap. In addition, there is a limit
to the capacity of dynamic-heap to hold edges, and if this
capacity is exceeded, we write a certain number of edges at
the top of the dynamic-heap back into linear-heap.
Detailed implementation of algorithm. Our lazy update
algorithm is shown in Algorithm 3. The process of applying
the data structure is outlined in Algorithm 4. Initially, all edges
are stored in the linear heap, and the algorithm iteratively
deletes the edge with the smallest support from the linear heap.
During edge deletion, the dynamic heap structure is utilized
to retain edges with high support that are frequently updated,
allowing multiple updates to be performed in memory and
reducing the overhead of writing back to disk multiple times.

Specifically, to remove an edge (u, v) from the lheap, a
linear heap, we also need to update the neighboring edges
that form a triangle with this edge. If the edge (u,w) with
higher support is not present in the dheap, a dynamic heap, it
is removed from the lheap and placed into the dheap, and its
support is updated (line 4-8). Otherwise, it is directly updated
in the dheap. In the case where sup(u,w) = sup(u, v), this
means that the edge (u,w) is about to be deleted, pending
a batch write back to lheap (line 10-13). It is worth noting
that when the number of edges present in the dheap exceeds
the capacity limit, the first capacity edges are continually
removed from the top of the dheap, and based on the support
of these edges, these edges are written to their corresponding
locations in the lheap (line 14-17). Finally, if the support of the
top edge of the dheap is no greater than the smallest support
in the lheap, then these edges need to be written back to the
lheap from the dheap (line 18-20).

Example 4: Consider the graph G in Fig. 4, the process
of deleting edges is shown in Fig. 5. We aim to delete edges
located in lheap with minimum support (i.e., sup = 1). Firstly,
delete e1, e2 and e7 are added to dheap with their support
updated. Next, the algorithm deletes e3, and since sup(e2) =
sup(e3), only e10 is added to dheap and its support is set as
sup(e10)− 1. When we delete e4, e7 is already in dheap and
does not need to be loaded from lheap. Instead, we update
the support of e7 and adjust its position upwards in dheap.
Finally, these edges with support 1 in dheap are written back
to lheap. It is worth noting that since e10, e12, e14 are still in
dheap, their positions in lheap have not been updated.

Let Cost be the number of I/O operations triggered when
updating an edge that is not in dheap.



Theorem 3: The memory costs of Algorithm 3 are char-
acterized by O(n + capacity). The I/O complexity of 3 is
O(max(logub2 |E(Gcmax

)|Cost, |E(H ′)|Cost)), and the CPU
time complexity of 3 is O(|E(H ′)|1.5) [11].

Proof: Algorithm 3 has a space complexity of O(n +
capacity) due to the allocation of memory space for the
dheap. The I/O complexity is optimized compared to Al-
gorithm 2. It has been observed that Cost is significantly
smaller than |N(x) ∩ N(y)|, indicating that 0 < Cost ≪
|N(x) ∩ N(y)|. The CPU time complexity is equivalent to
Algorithm 2. □

Remarks. Given the hierarchical structure nature of k-truss,
our algorithms designed for kmax-truss computation may also
be used to compute models based on hierarchical structure.
One such example is the k-(r, s)-nucleus decomposition,
representing a generalization of truss decomposition. The
k-(r, s)-nucleus of G is defined such that each r-clique is
contained in at least k s-cliques, where 1 ≤ r < s [24].
By extending the techniques we proposed in this paper, the
problem of computing the maximum k-(r, s)-nucleus in large
graphs under the semi-external model also can be efficiently
solved. This indicates that our proposed techniques provide an
important reference for solving similar problems.

Discussions. We observe that Zhang et al. [25] implemented
the kmax-truss computation on GPU. However, our proposed
techniques are very different from those proposed in [25]. The
detailed discussion is presented below.

First, [25] proposed k-clique technique to early terminate
the computation. In contrast, we propose a k-core based
technique to obtain a tight lower bound for pruning nodes
of graph G. The advantages are that k-core has a lower
computational cost, and the tight lower bound has a stronger
pruning ability. Besides, [25] proposed an adaptive step size
pruning technique, the number of iterations of this algorithm
is linearly related to kmax. However, we propose a binary
search approach where the number of iterations is linear with
log kmax, thus greatly reducing the I/O overhead, compared
to the approach in [25].

Second, The lower bounds we propose are mainly used to
prune the size of the subgraphs that need to be loaded into
memory. The high performance of [25] mainly depends on
being an in-memory computation algorithm, which allows to
access the global graph information efficiently, and thus it is
not necessary to use the lower bounds in [25]. However, in our
external memory algorithm, tighter lower bounds are proposed
to determine whether the edges are to be loaded into the main
memory, which greatly reduces the I/O consumption.

IV. kmax-TRUSS MAINTENANCE IN DYNAMIC GRAPHS

In this section, we propose a novel approach to dynamically
maintain the kmax-truss in a semi-external setting. In this
problem, we only have information about the edges in the
kmax-truss, and no information is provided for the other edges.
When an edge is added or removed from the graph, we
need to recompute the kmax-truss, which results in substantial
I/O overhead. To address this challenge, we introduce a new
technique for maintaining the kmax-truss efficiently.

Before introducing our algorithm, we present the conclu-
sions, on which these efficient algorithms are designed.

Algorithm 5: Deletion
1 Delete (u, v) from kmax-truss;
2 Update du and dv ;
3 if u ∈ kmax-truss and v ∈ kmax-truss then
4 Queue← ∅;
5 Load Nu(kmax-truss) and Nv(kmax-truss);
6 for w ∈ Nu(kmax-truss) ∩Nv(kmax-truss) do
7 sup((u,w))← sup((u,w))− 1;
8 if sup((u,w)) < kmax − 2 then
9 Queue← (u,w);

10 Repeat lines 6-8 for (v, w);

11 while Queue ̸= ∅ do
12 (x, y)← Queue.pop();
13 Load Nx(kmax-truss) and Ny(kmax-truss);
14 for z ∈ Nx(kmax-truss) ∩Ny(kmax-truss) do
15 if sup((x, z)) = kmax − 2 and (x, z) not be visited then
16 Queue← (x, z);

17 Repeat lines 15-16 for (y, z);

18 sup((u, v))← sup((u, v))− 1;
19 Remove (u, v) from kmax-truss;

20 if kmax-truss = ∅ then
21 kmax ← kmax − 1;
22 Update coreness of each node in G [15];
23 Vnew ← {v ∈ V |core(v) ≥ kmax − 1};
24 Denote by H the subgraph induced by Vnew ;
25 Compute sup(e) of each edge in H with a semi-external method;
26 Repeat lines 19-26 of Algorithm 3 to get new kmax-truss;

Lemma 6: If an edge is inserted into (deleted from) graph
G, the trussness for any e ∈ E(G) may increase (decrease)
by at most 1 [26].

A. Edge Deletion

In Lemma 6, after the deletion of an edge, we can conclude
that the trussness of any edge e ∈ E(kmax-truss) will
decrease by at most 1. This implies that the old trussness of
edges in the kmax-truss serves as upper bounds for their new
trussness.

Lemma 7: The kmax-truss of G may be updated when
deleting (u, v) only if both u and v are part of the kmax-truss.

Proof: If edge (u, v) is not in kmax-truss, it must not be
in kmax-class, so the deletion of (u, v) will have no effect on
kmax-truss. □

By Lemma 7, kmax-truss may be updated only if both u
and v are contained in kmax-truss.

Let com(u,v) be the common neighbors of u and v, i.e.,
com(u,v) = {w : w ∈ Nu(G) ∩ Nv(G)}. Let Ecom(u,v)

be
the set of edges between com(u,v) and (u, v), i.e., Ecom(u,v)

= {(x, y) : x ∈ com(u,v), y ∈ {u, v}}.
Lemma 8: After deleting (u, v), kmax-truss will be updated

only if there is at least one edge e ∈ Ecom(u,v)
with support

less than kmax − 2.
Proof: If the support of an edge (x, y) ∈ Ecom(u,v)

is less
than kmax − 2, thus (x, y) will be deleted from the original
kmax-truss, resulting in an update of the kmax-truss. □

Detailed implementation of algorithm. Our main algorithm
is outlined in Algorithm 5. We need to update the degree of the
vertex first when deleting an edge (u, v). According to Lemma
7, we only need to consider the case where both nodes u and v
are in the kmax-truss (lines 1-3). We initialize a queue Q (line
4) to store edges whose deletion of (u, v) leads to neighboring
edges with support less than kmax−2, causing changes in the
original kmax-truss (lines 4-10). Subsequently, we employ the



peeling method to iteratively remove edges from the queue Q
while collecting edges with new support less than kmax−2 in
a breadth-first search manner (lines 11-19). If not all edges in
kmax-truss are deleted, some edges with support no less than
kmax−2 still form kmax-truss; otherwise, kmax-truss vanishes.
In the latter case, we need to recompute (kmax − 1)-truss, as
an edge deletion can only decrease the maximum trussness
by 1 (Lemma 6). Additionally, due to the deletion of edges,
the core values of the nodes in graph G may change. Thus,
based on Lemma 4, we utilize the core values to prune out
useless nodes and then invoke Algorithm SemiLazyUpdate to
find (kmax − 1)-truss on the refined subgraph (lines 20-26).

Example 5: Consider the graph G in Fig. 2. Suppose
that we delete an edge (v2, v5), and we have kmax = 4
with the kmax-truss being the subgraph covered with the
shaded region. First, the algorithm computes Ecom(v2,v5)

,i.e.,
{(v2, v3), (v2, v4), (v3, v5), (v4, v5)}. Since the deletion of
(v2, v5), sup((v3, v5)) and sup((v4, v5)) both become 1.
These two edge no longer belong to kmax-truss, which
is then composed of the subgraph formed by the nodes
{v1, v2, v3, v4} and the subgraph formed by {v5, v6, v7, v8}.

B. Edge Insertion
Here we discuss the case of edge insertion. A new edge

(u, v) inserted into graph G results in an increase in the
trussness of any e ∈ E(G) by at most 1, according to Lemma
6, which may result in edges with trussness kmax−1 becoming
part of kmax-truss. As a result, Lemma 7 does not apply to
the case of edge insertion.

We define the k-level triangles of an edge in kmax-truss.
Definition 8 (k-level triangles): Let (u, v) be an edge and

k ≥ 2. We define the set of k-level triangles containing (u, v)
as △k

(u,v) = {△uvw : min{sup((u,w)), sup((v, w))} ≥ k −
2}. The number of triangles in this set is denoted by |△k

(u,v)|.
Lemma 9: For an edge (u, v) to be inserted, kmax-truss

will be updated if (1) edge (u, v) ∈ E(kmax-truss). Or (2)
u and v are not both in kmax-truss, and min{sup((u, v)) +
2,min(core(u), core(v)) + 1} ≥ kmax.

Proof: First, we consider the case (1). If |△kmax+1
(u,v) | <

kmax − 1, (u, v) is added to the kmax-truss, but kmax does
not become kmax+1. If |△kmax+1

(u,v) | ≥ kmax−1, this may lead
to the generation of (kmax + 1)-truss from kmax-truss.

Second, we consider the case (2). Even if
(u, v) /∈ E(kmax-truss), the insertion of edge (u, v)
into (kmax − 1)-truss may result in some edges becoming
part of kmax-truss. Thus based on Lemma 3, the insertion of
(u, v) may affect kmax-truss if the new upper bound of (u, v)
is no less than kmax. □
Detailed implementation of algorithm. Our algorithm for
edge insertion is shown in Algorithm 6. By Lemma 9, we need
to consider two cases to maintain kmax-truss. First, when (u, v)
is inserted into the kmax-truss, we increase the support of all
edges that form a triangle with (u, v) and compute |△kmax+1

(u,v) |.
If |△kmax+1

(u,v) | < kmax − 1, it indicates that the insertion of
(u, v) does not affect the trussness of other edges (line 4-13).
Otherwise, it is possible to form a new (kmax+1)-truss. Next,
we assume the existence of (kmax+1)-truss, remove the edges
with support of kmax − 2, and finally see if any edges with a

Algorithm 6: Insertion
1 Insert (u, v) into kmax-truss;
2 Update du and dv ;
3 if u ∈ kmax-truss and v ∈ kmax-truss then
4 QueueV ← ∅;
5 Load Nu(kmax-truss) and Nv(kmax-truss);
6 for w ∈ Nu(kmax-truss) ∩Nv(kmax-truss) do
7 sup((u,w))← sup((u,w)) + 1;
8 if sup((u,w)) > kmax − 2 then
9 if u /∈ QueueV then QueueV ← u;

10 if w /∈ QueueV then QueueV ← w;

11 Repeat lines 9-10 for (v, w);

12 if |△kmax+1
(u,v)

| < kmax − 1 then Continue;
13 QueueE ← ∅; S ← ∅ ;
14 ColCandidate (kmax-truss, QueueV,QueueE);
15 while QueueE ̸= ∅ do
16 (u, v)← QueueE.top(); QueueE.pop();
17 Load Nu(kmax-truss) and Nv(kmax-truss) from disk;
18 for w ∈ Nu(kmax-truss) ∩Nv(kmax-truss) do
19 if sup((u,w)) ≤ kmax − 2 and

sup((v, w)) ≤ kmax − 2 then Continue;
20 if sup((u,w)) > kmax − 2 then
21 if (u,w) /∈ S then S ← {u,w, sup((u,w))};
22 sup((u,w))← sup((u,w))− 1;
23 if sup((u,w)) = kmax and (u,w) not be visited then
24 QueueE ← (u,w)

25 Repeat lines 20-24 for (v, w);

26 if ∃e = (u, v) of kmax-truss s.t. sup(e) > kmax − 2 then
27 kmax ← kmax + 1;

28 else
29 for {u, v, s} ∈ S do sup((u, v))← s;

30 else
31 Update coreness of each node in G [15];
32 if min{sup((u, v)) + 2,min(core(u), core(v)) + 1} ≥ kmax

then
33 Repeat lines 24-26 of Algorithm 5;

support of kmax − 1 still exist. This is achieved by iterating
through the vertices of edges with support no less than kmax−1
and adding the edges of their neighbors with a support of
kmax−2 to the candidate set QueueE (line 14). Subsequently,
we employ the peeling method to iteratively remove edges
from the candidate set while collecting edges with new support
kmax−2 in a breadth-first search manner (lines 15-25). If there
are edges with support greater than kmax − 2 at the end, they
form a (kmax+1)-truss; otherwise, those edges whose support
has been updated regain their original support (lines 26-29).

Second, if there exists at least a node that is not in kmax-
truss. As shown in case (2) in Lemma 9, for edges that satisfy
the condition, they will be extended to kmax-truss. In this
case, the kmax-truss will not contain the (kmax + 1)-truss.
To address this situation, we initially employ the core pruning
technique (Lemma 4) to eliminate nodes unlikely to be part of
the (kmax+1)-truss. Finally, we identify the (kmax+1)-truss,
i.e., the new kmax-truss, in the refined subgraph. (line 31-33).

Example 6: Consider the graph G in Fig. 2. Suppose
that we insert an edge (v1, v5). First, the algorithm
computes Ecom(v1,v5)

. All these edge supports in Ecom(v1,v5)

increase by 1. Then, we find the candidate set, i.e.,
{(v5, v6), (v5, v7), (v5, v8)} and the (kmax + 1)-truss that
is assumed to exist, i.e. the subgraph between these nodes
{v1, v2, v3, v4, v5}. Removing edges from the candidate
set does not affect the support of edges in hypothetical
(kmax + 1)-truss. Finally, this hypothetical (kmax + 1)-truss



Algorithm 7: ColCandidate
Input: kmax-truss, QueueV and QueueE

1 while QueueV ̸= ∅ do
2 u← QueueV.top(); QueueV.pop();
3 Load Nu(kmax-truss);
4 for w ∈ Nu(kmax-truss) do
5 if sup((u,w)) > kmax − 2 then
6 if w /∈ QueueV and w not be visited then QueueV ← w;

7 else
8 If (u,w) /∈ QueueE and (w, u) /∈ QueueE then

QueueE ← (u,w);

becomes the real (kmax + 1)-truss.

V. EXPERIMENTS

A. Experimental setup

Different algorithms. For the computation of kmax-truss,
we implement the proposed external memory algorithms,
namely, SemiBinary, SemiGreedyCore and SemiLazyUpdate.
To facilitate comparison, we also implement the state-of-the-
art external memory algorithm Top-Down [27]. For kmax-
truss maintenance, we implement the proposed Deletion and
Insertion. To our knowledge, there is no external memory
algorithm specifically designed to directly maintain the kmax-
truss for dynamic graphs. In our experiments, we use external
memory algorithms initially tailored for maintaining all k-
trusses [12], as baselines. These baselines are identified as
YLJ-Deletion and YLJ-Insertion for edge deletion and inser-
tion respectively, and we implement them as the source codes
are not publicly available.
Datasets. We collect 168 real-world networks of various types,
along with 3 synthetic graphs, all of which are undirected.
The detailed statistics of these networks are summarized in
TABLE II. Among these datasets, the synthetic graphs Kron29
is generated by Graph500 kronecker (https://graph500.org/).
The remaining networks are sourced from the Koblenz Net-
work Collection (http://konect.unikoblenz.de/), the Stanford
Network Collection (http://snap.stanford.edu/data/), the Web
Graph Collection (http://webgraph.di.unimi.it/). For brevity,
we use the GSH to represent the gsh-2015-host dataset.
Experimental settings. All algorithms are implemented in
C++, and compiled using the g++ compiler with O3 opti-
mization. Our experiments are conducted on a PC with an
Intel Xeon Gold 5218R CPU @2.10GHz, 96GB of DDR4
RAM, and 7200 RPM SATA III 1TB SSD disk, running
the Linux operating system. The block size is determined
by the operating system, which fixed it at 4k bytes. The
running time of an algorithm is measured by the time elapsed
during the program’s execution. For the input graph G, it is
converted into a binary adjacency list form and stored on disk
using the standard external-memory sorting algorithm. We set
capacity to the number of vertices in G. Unless explicitly
stated otherwise, we employ the symbol “INF” to indicate
that the algorithm cannot terminate within 48 hours.

B. Performance studies

In this subsection, we select 5 medium-sized graphs and 5
large-sized graphs to evaluate the efficiency of our algorithms.
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Fig. 6. Results of various algorithms for kmax-truss computation

Exp-1: kmax-truss computation. Fig. 6 presents the results
regarding running time, I/O cost, and memory overhead for
different algorithms for kmax-truss computation. Note that,
for large-sized graphs, both the Top-Down and SemiBinary
algorithms surpass the time constraints, and thus their results
are not included in Fig. 6. For the dataset Arabic, the
Top-Down algorithm also exceeds the time constraints, and
we label its runtime, I/O cost, and memory overhead as “INF”
in Fig. 6.

As depicted in Fig. 6 (a-b), the proposed three novel
algorithms show superior performance when compared to
the existing Top-Down algorithm. Notably, SemiLazyUpdate,
our optimal algorithm, remains at least two orders of mag-
nitude faster than Top-Down on most graphs. In compar-
ison to SemiGreedyCore, SemiLazyUpdate significantly en-
hances efficiency, particularly on large-scale graphs. For in-
stance, for the dataset Kron29 with nearly 6 billion edges,
SemiLazyUpdate computes the kmax-truss in a mere 1,012
minutes. In contrast, SemiGreedyCore requires 6,166 minutes,
rendering it nearly six times slower than SemiLazyUpdate.

In terms of I/O cost, Fig. 6 (c-d) reveal that Top-Down
has the highest I/O consumption among all algorithms,
while SemiLazyUpdate exhibits the lowest. SemiBinary
incurs higher I/O costs compared to SemiGreedyCore. These
findings align with the experimental observations regarding
time costs, as the runtime of external memory algorithms is
notably influenced by the associated I/O costs. The rationale
behind the reduced I/O overhead of SemiGreedyCore
compared to SemiBinary lies in its effective utilization of
the greedy strategy, allowing it to prune vertices that are
definitely not included in the kmax-truss. Note that, as shown
in Fig. 6 (d), the I/O overhead of SemiLazyUpdate on
large-scale graphs is at least an order of magnitude less than
that of SemiGreedyCore on Twitter, GSH, and Kron29. These
results underscore the significant benefits of the combination



TABLE II
NETWORKS STATISTICS AND THE kmax RESULTS (1K=103 ,1M=106 ,AND 1G=109)

Networks Name |V | |E| kmax δ Name |V | |E| kmax δ Name |V | |E| kmax δ

Biological

Diseasome 0.5K 1.2K 11 10 G-Worm 3.5K 6.5K 7 10 CE-GN 2.2K 53.7K 23 48
ecoMangwet 0.1K 1.4K 13 23 G-FisYeast 2.0K 12.6K 16 34 DR-CX 3.3K 84.9K 89 95
Yeast 1.5K 1.9K 6 5 G-Fruitfly 7.3K 24.9K 7 12 HS-CX 4.4K 108.8K 90 98
Celegans 0.5K 2.0K 9 10 G-Human 9.4K 31.2K 13 12 G-Yeast 6.0K 156.9K 36 64
ecoFoodweb 0.1K 2.1K 11 24 SC-GT 1.7K 34.0K 49 60 CE-CX 15.2K 246.0K 75 78
ecoFlorida 0.1K 2.1K 5 15 SC-CC 2.2K 34.9K 69 68 HuGene2 14.0K 9.0M 1683 1902
G-Plant 1.7K 3.1K 10 12 HS-LC 4.2K 39.5K 59 66 HuGene1 21.9K 12.3M 1793 2047
DM-HT 3.0K 4.7K 4 11 CE-PG 1.9K 47.8K 55 80 MoGene 43.1K 14.5M 799 1045

Collaboration
caHepPh 11.2K 117.6K 239 238 caAstroPh 17.9K 197.0K 57 56 caIMDB 896.3K 3.8M 3 23
caGrQc 4.2K 13.4K 44 43 caCiteseer 227.3K 814.1K 87 86 caDBLP 540.5K 15.2M 337 336
caCondMat 21.4K 91.3K 26 25 caMath 391.5K 873.8K 25 24 Hollywood 1.1M 113.8M 2209 2208

Citation ctDBLP 12.6K 49.6K 9 12 ctCiteseer 384.1K 1.7M 13 15 ctHepPh 28.1K 3.1M 411 410
ctCora 23.2K 89.2K 11 13 ctHepTh 22.9K 2.4M 562 561 ctPatent 3.8M 16.5M 36 64

Online contact
emDNC 0.9K 10.4K 75 74 emEU 32.4K 54.4K 13 22 comEnron 87.0K 297.5K 36 53
comFBwal 45.8K 183.4K 10 16 dbpedia− team 365K 780K 3 9 emEuAll 265.0K 364.5K 20 37
comUc 1.9K 13.8K 7 20 comDIGG 30.4K 85.2K 5 9 emEnLarge 33.7K 180.8K 22 43

Infrastructure

Euro 1.2K 1.4K 3 2 US1 129.2K 165.4K 3 3 Italy 6.7M 7.0M 3 3
USAir97 0.3K 2.1K 22 26 PA 1.1M 1.5M 4 3 Britain 7.7M 8.2M 3 3
Power 4.9K 6.6K 6 5 Belgium 1.4M 1.5M 3 3 Germany 11.5M 12.4M 3 3
Openflights 2.9K 15.7K 23 28 Netherlands 2.2M 2.4M 3 3 Asia 12.0M 12.7M 4 3
Luxembourg 114.6K 119.7K 3 2 CA 2.0M 2.8M 4 3 US2 23.9M 28.9M 4 3

Social

FbFood 620 2.1K 10 11 WikiElec 7.1K 100.8K 23 53 LiveMocha 104.1K 2.2M 27 92
Weibo 58.7M 261.3M 80 193 GemsecRO 41.8K 125.8K 7 7 Buzznet 101.2K 2.8M 59 153
BlogCata 88.8K 2.1M 101 221 fbMedia 27.9K 206.0K 31 31 fbSport 13.9K 86.8K 29 31
Epinions 26.6K 100.1K 18 32 Brightkite 58.2K 214.1K 43 52 FourSq 639.0K 3.2M 38 63
Hamster 2.4K 16.6K 25 24 GemsecHU 47.5K 222.9K 12 11 Themarker 69.4K 1.6M 51 164
fbTvshow 3.9K 17.2K 57 56 Douban 154.9K 327.2K 11 15 Lastfm 1.2M 4.5M 23 70
Twitter 41.6M 1.4G 1998 2488 Slashdot1 77.4K 469.2K 35 54 wikiTalk 2.4M 4.7M 53 131
Livejournal 4.0M 27.9M 214 213 GemsecHR 54.6K 498.2K 13 21 Caster 149.7K 5.4M 207 419
Gplus 23.6K 39.2K 7 12 Slashdot2 82.2K 504.2K 36 55 DIGG 770.8K 5.9M 73 236
Advogato 5.2K 39.4K 19 25 Academia 190.2K 788.3K 11 19 Flixster 2.5M 7.9M 47 68
fbPoli 5.9K 41.7K 26 31 fbArtist 50.5K 819.1K 23 69 Dogster 426.8K 8.5M 93 248
Anybeat 12.6K 49.1K 25 33 TwiFollows 465.0K 833.5K 6 30 twiHiggs 456.6K 12.5M 72 125
fbCom 14.1K 52.1K 21 20 Delicious 426.4K 908.3K 10 22 Flickr 1.7M 15.6M 153 309
fbPubFig 11.6K 67.0K 25 42 Gowalla 196.6K 950.3K 29 51 Pokec 1.6M 22.3M 29 47
fbGovern 7.1K 89.4K 30 46 Youtube 3.2M 9M 33 88 Orkut 3.0M 106.3M 75 230

Hyperlink

Polblogs 0.6K 2.3K 10 12 WikiIS 69.4K 907.4K 378 379 Wiki 1.9M 4.5M 31 66
EPA 4.3K 8.9K 4 6 WikiFY 65.6K 921.6K 156 155 WikiTH 266.9K 4.6M 391 390
Webbase 16.1K 25.6K 33 32 Notre 325.7K 1.1M 155 155 WikiLT 268.2K 5.1M 263 268
WikiChInter 1.9M 9.0M 33 120 WikiIA 24.0K 1.2M 530 534 BerkStan 685.2K 6.6M 201 201
Spam 4.8K 37.4K 23 35 WikiAF 72.3K 1.5M 364 363 IT 509.3K 7.2M 432 431
Indochina 11.4K 47.6K 50 49 lkArabic 163.6K 1.7M 102 101 WikiEO 413.0K 8.2M 689 688
WikiPedia 13.5M 437M 1101 1135 WikiAST 83.3K 2.0M 91 107 WikiCh 1.9M 9.0M 33 120
Google 1.3K 2.8K 18 17 Stanford 281.9K 2.0M 62 71 UK2 129.6K 11.7M 500 499
WikiVote 889 2.9K 7 9 BaiduRe 415.6K 2.4M 95 228 Hudong 2.0M 14.4M 267 266
WikiNN 215.9K 2.9M 246 250 Italycnr 325.6K 2.7M 84 83 Baidu 2.1M 17.0M 31 78
WikiYO 41.2K 696.4K 477 476 WikiLV 190.0K 2.9M 382 384 UK 105M 3.3G 5705 5704
WikiCKB 60.7K 802.1K 342 373 WikiLA 181.2K 3.0M 255 266 GSH 68.6M 1.8G 9923 9955
WikiSW 58.8K 877.0K 156 263 GoogleDir 875.7K 4.3M 44 44 SK 50.6M 1.9G 4511 4510

Technological
Routers 2.1K 6.6K 16 15 WHOIS 7.5K 56.9K 71 88 RLCaida 190.9K 607.6K 19 32
PGP 10.7K 24.3K 27 31 Internet 40.2K 85.1K 17 23 Skitter 1.7M 11.1M 68 111
Caida 26.5K 53.4K 16 22 P2P 62.6K 147.9K 4 6 IP 2.3M 21.6M 4 253

Software Jung 6.1K 50.3K 17 65 JDK 6.4K 53.7K 17 65 Linux 30.8K 213.2K 10 23
Lexical EAT 23.1K 297.1K 9 34 Bible 1.8K 9.1K 11 15 Yahoo 653.3K 2.9M 3 29

Miscellaneous Arabic 22.7M 639.9M 3248 3247 misFlickr 105.9K 2.3M 574 573 misDBpedia 4.0M 12.6M 18 20
misTwin 14.3K 20.6K 27 26 misAmazon 403.4K 2.4M 11 10 misActor 382.2K 15.0M 294 365

Synthetic Kron29 536.8M 5.9G 1976 3987 CL-1000000 910K 2.7M 4 12 geo1k-40k 1K 40K 34 47

of linear-heap and dynamic-heap in greatly reducing I/O
consumption, thereby enhancing the efficiency of kmax-truss
computation.

In terms of memory usage, as evident from Fig. 6 (e-f), our
algorithms exhibit lower memory consumption compared to
Top-Down. SemiGreedyCore, in particular, requires the least
amount of memory as expected. The memory overhead of
SemiBinary is greater than that of SemiGreedyCore because
it contains numerous unpromising nodes that must not be
in kmax-truss, resulting in increased memory usage. Further-
more, SemiLazyUpdate consumes slightly more memory than
SemiGreedyCore but still less than SemiBinary. This is due to
the dynamic-heap structure incorporated in SemiLazyUpdate,
which stores frequently updated edges in memory, leading
to a marginal increase in memory overhead. These results
confirm our theoretical results in Section III-C. Additionally,

the SemiLazyUpdate algorithm requires less than 16 GB of
memory to effectively process the largest dataset Kron29.
These results highlight the efficiency and potential applica-
bility of SemiLazyUpdate for large-scale graph analysis with
limited memory resources.

Exp-2: Scalability testing for kmax-truss computation.
We randomly select 20%-80% of the vertices from each
dataset to generate four subgraphs for testing the scalabil-
ity of SemiGreedyCore and SemiLazyUpdate. Due to the
space limits, we present results specifically for the Twitter
and Kron29 datasets with different scales of |V |. Fig. 7
shows the time costs and I/O costs of SemiGreedyCore and
SemiLazyUpdate with varying |V | on the Twitter and Kron29.
The results also show a consistent trend on graphs with
different orders of magnitude in the number of vertices.
Specifically, with an increase in the number of vertices (i.e.
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Fig. 7. Scalability of the kmax-truss computation algorithms (vary |V |)

TABLE III
THE RESULTS OF THE GRAPH REDUCED BY SemiGreedyCore

(1K=103 ,1M=106 ,AND 1G=109)
Dataset Gcmax G

Name |V | |E| |E(Gcmax )| per k′
max kmax

Youtube 3.2M 9M 29,001 0.31% 32 33
ctPate 3.8M 16.5M 3,951 0.02% 36 38

Hollywood 1.1M 113.8M 2,438,736 2.14% 2209 2209
Wikipedia 13.5M 437M 643,181 0.15% 1101 1101
Arabic 22.7M 639.9M 5,273,128 0.82% 3248 3248
Twitter 41.6M 1.4G 4,585,552 0.31% 1994 1998
GSH 68.6M 1.8G 52,570,705 2.92% 9921 9923
SK 50.6M 1.9G 10,185,835 0.52% 4511 4511
UK 105M 3.3G 16,270,660 0.49% 5705 5705

Kron29 536.8M 5.9G 72,011,126 1.22% 1978 1978

|V |), the running time and I/O costs across all algorithms
also exhibit an upward trend. Again, the SemiLazyUpdate
algorithm outperforms the SemiGreedyCore in all parameter
settings, particularly showcasing a tenfold improvement on the
Twitter dataset. Significantly, the time and I/O overhead in-
curred by SemiLazyUpdate show a steady and linear increase
with the expansion of the vertex set, whereas SemiGreedyCore
demonstrates a substantially steeper increase in both time and
I/O overhead. This suggests that SemiLazyUpdate is highly
scalable and efficiently handles large-scale graphs. Regarding
memory usage, which scales linearly with the number of
vertices, we do not present the results due to space limits.
Exp-3: Pruning performance of SemiGreedyCore. TABLE
III provides a detailed characterization of Gcmax by perform-
ing SemiGreedyCore on the original graph G. In TABLE III,
|E(Gcmax

)| represents the number of edges in Gcmax
, per

signifies the percentage of edges in Gcmax relative to the total
number of edges in G. Additionally, k′max (kmax) denotes
the maximum trussness in Gcmax (G). As can be seen from
TABLE III, on most other datasets, SemiGreedyCore retains
less than 2% of the remaining edges from the original graph.
In particular, k′max in Gcmax closely aligns with kmax in the
original graph G, with a difference of no more than 4 on
all datasets. These results confirm the efficiency of our graph
reduction approach in handling large real-world networks.
Exp-4: kmax-truss maintenance. In this experiment, we
redefine the term “INF” when the runtime exceeds the 100K
milliseconds time limit, consequently designating its I/O
cost as “INF”. We randomly insert (delete) 1000 edges for
each dataset and invoke the YLJ-Insertion and Insertion
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(YLJ-Deletion and Deletion) algorithms to maintain the
kmax-truss. The results, including the average processing
time and I/O costs, for three medium-sized graphs and two
large-sized graphs are illustrated in Fig. 8. Similar results are
observed for the other datasets as well.

Across all datasets, our algorithms, Insertion and Deletion,
consistently outperform YLJ-Insertion and YLJ-Deletion by
at least one order of magnitude in handling both edge in-
sertion and deletion. For example, on the Hollywood dataset,
YLJ-Insertion requires 27,008 ms to maintain the kmax-truss
for an edge insertion, whereas Insertion only takes 7 ms. For
an edge deletion, the runtime of YLJ-Deletion is 6,670 ms,
while Deletion completes the maintenance of kmax-truss in
just 63 ms, showcasing a performance advantage of two orders
of magnitude over the former. The limitation of YLJ-Insertion
and YLJ-Deletion lies in their dependence on a breadth-first
search within the kmax-truss to identify edges with a trussness
value of kmax, forming a candidate set for potential updates.
These results demonstrate that our algorithms outperform
YLJ-Insertion and YLJ-Deletion in terms of time and I/O
efficiency for dynamically updated graphs.
Exp-5: Scalability testing for kmax-truss maintenance.
we make use of the dataset UK to test the scalability of
the proposed kmax-truss maintenance algorithms. As shown
in Fig. 9 (a), for an edge deletion, as |V | increases from
20% to 100%, the Deletion exhibits a stable increase in
processing time, whereas the YLJ-Deletion experiences a
sharp rise. From the Fig. 9 (b), for an edge insertion,
Insertion and YLJ-Insertion still show the same trend as an
edge deletion. Once again, we can observe that the runtime
of our algorithms is significantly lower than those of the
state-of-the-art algorithms. Therefore, these results indicate
that our algorithms show better scalability for kmax-truss
maintenance.C. kmax of Real-World Networks

Exp-6: The distribution of kmax. We conduct an exten-
sive evaluation of the kmax values for a total of 168 real-
world graphs, with the results presented in TABLE II. The
distribution of kmax for these 168 graphs is also depicted
in Fig. 10. Generally, the majority of the graphs exhibit
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TABLE IV
COMPARISON OF RESULTING SIZES

Name |E(cmax-core)| |E(kmax-truss)| Name |E(cmax-core)| |E(kmax-truss)|
Youtube 29,001 8,250 Twitter 4,585,552 3,993,811
ctPate 3,951 2,075 GSH 52,570,705 49,923,540

Hollywood 2,438,736 2,438,736 SK 10,185,835 10,176,815
Wikipedia 643,181 643,181 UK 16,270,660 16,270,660
Arabic 5,273,128 5,273,128 Kron29 72,011,126 6,137,945
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relatively small kmax values. As seen from Fig. 10 (a), it is
evident that 139 networks have a kmax value smaller than
200, confirming that many real-world networks indeed have
a small kmax value. However, certain large and cohesive
graphs, particularly social networks and hyperlink networks,
may have significantly larger kmax values. For instance, the
social network Twitter has a kmax value of 2,488, while the
web graph GSH has a strikingly high kmax value of 9,955.
Exp-7: Comparison between kmax and degeneracy. Degen-
eracy [28] is a crucial metric for measuring the sparsity of a
graph, denoted by cmax. Here we compare kmax with cmax by
calculating cmax−kmax

cmax
for 168 real-world graphs in TABLE

II, and the results are shown in Fig. 10 (b). As observed,
cmax is greater than kmax in 65% of the real-world graphs.
Additionally, on 28% of the more cohesive real-world graphs,
we find that kmax = cmax + 1 in the worst-case scenario.
Notably, a significant proportion of real-world graphs exhibit a
power-law distribution, particularly evident in social network.
In approximately 90% of such graphs, the kmax are less
than the cmax. Moreover, both kmax and cmax are commonly
employed as complexity bounds for identical graph algorithms,
as mentioned earlier. Given that kmax is significantly smaller
than cmax in most graphs, expressing the complexity bound in
terms of kmax yields a more precise and stringent estimation.
Exp-8: Comparison between kmax-truss and other models.

In community search, k-core, k-truss, and k-clique models
are commonly employed [29]. However, accurately computing
the maximum clique is NP-hard [30], and we fail to obtain the
maximum clique in 3,000 minutes on Youtube. Consequently,
due to the inefficiency of maximum clique computation, we
choose the cmax-core as the comparison model.

Fig. 11 shows the runtime of cmax-core and kmax-truss
model on 10 graphs. The running time of cmax-core is lower
than that of kmax-truss, which is mainly because the I/O com-
plexity of cmax-core computation is O(log2 h(d)×τ(ñ+m̃)/2)
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[16], while the I/O complexity of kmax-truss computation is
O(max(logub2 |E(Gcmax

)|Cost, |E(H ′)|Cost)), presented in
Theorem 3. While kmax-truss exhibits slightly lower compu-
tational efficiency compared to cmax-core, the resulting size
of kmax-truss is smaller than cmax-core. For instance, on
the Kron29, the number of edges for kmax-truss is an order
of magnitude less than that of cmax-core. The experimental
results show that kmax-truss is more capable of capturing the
key information of the graph compared to cmax-core, which
can be used to enhance the information mined by cmax-core.

D. Case Study
Exp-9: Word association network. Here we conduct a case
study on a word association network, referred to as WordNet
[31]. Each node represents a word, and edges between words
indicate strong semantic relationships. Our goal is to identify a
dense subgraph that contains the largest number of words with
similar meanings, offering a precise depiction of the scenarios
associated with these semantically related words. To achieve
this, we compute the kmax-truss, along with the cmax-core and
maximum clique for comparison purposes.

We begin by showing the kmax-truss, which is a 9-truss
containing 10 words, depicted in Fig. 12 (a). This 9-truss iden-
tifies semantically related words associated with “ALCOHOL
”, effectively capturing the essence of the complete context.
Conversely, as illustrated in Fig. 12 (b), the 9-clique achieves a
similar outcome by uncovering words associated with “MUSIC
”. However, due to the strict definition of the k-clique [32],
which makes this model not noise-resistant. For instance, in
Fig. 12 (a), “BOTTLE” and “DRINK” are not edge-connected,
yet they belong to the same scene. This semantic relationship
can be effectively captured by the kmax-truss. In contrast, the
k-clique fails to achieve this outcome. Lastly, in Fig. 12 (c),
the 13-core delves into a larger graph with loosely connected
vertices, which curtails its ability to provide a precise char-
acterization of the given scenario. These results highlight that
the kmax-truss provides a more comprehensive representation
of semantically related words in specific contexts.
Exp-10: Florida bay food web. We conduct a case study
on FoodWeb from SNAP [33] to identify important species
that are involved in the food chain that completes the carbon
cycle in an ecosystem. Each node represents a taxon (similar
to a species), and edges represent the transfer of carbon



information between species. Fig. 13 (a) and Fig. 13 (b)
show the community search results obtained by applying
the kmax-truss model and the cmax-core model, respectively.
Notably, the degree of a node in the FoodWeb directly
correlates with its involvement in multiple food chains. This
leads us to establish a noteworthy correlation: a higher node
degree indicates greater significance of a species within the
ecosystem, visually represented by a darker color.

The inspection of Fig. 13 (b) reveals a total of 80 identified
species, among which those concentrated in the central region
exhibit heightened importance. Conversely, the community
outcome in Fig. 13 (a) is predisposed to capturing pivotal
species compared cmax-core as shown in Fig. 13 (b). Thus,
based on this comparative analysis, it can be inferred that the
kmax-truss model presents a superiority over the cmax-core
model in terms of effectiveness in revealing key species within
the ecosystem’s food web structure.

VI. RELATED WORK

K-Truss Decomposition. Identifying cohesive subgraphs is
a crucial task in social network analysis, particularly in
the context of k-truss [1]. Numerous studies have been
conducted to investigate k-truss decomposition. The earliest
algorithm for truss decomposition is proposed by Cohen [1].
After that, several different algorithms have been proposed
to compute k-trusses [2], [8]–[11], [34], [35]. The above
algorithms are in-memory algorithms that are slow in handling
large real-world graphs, except that [11] is an I/O efficient
algorithm. The most relevant study to our work is [11], where
the Top-Down algorithm is implemented to compute kmax-
truss. Nonetheless, experimental results demonstrate that our
approach outperforms the Top-Down algorithm.
Truss Maintenance. In real-world scenarios, graphs are sub-
ject to continuous changes over time. Many works have
focused on developing efficient incremental algorithms. For
truss maintenance, Zhou et al. [26] focused on dynamically
maintaining maximal trusses in evolving networks. Ebadian
et al. [36] presented a novel hybrid strategy for updating k-
truss in public-private graphs. Zhang et al. [37] proposed an
efficient truss maintenance algorithm on dynamic graphs based
on the truss decomposition order. Luo et al. [38] proposed
a batch truss maintenance algorithm by presenting an edge
structure called a triangle disjoint set. In addition to the in-
memory algorithm, Jiang et al. [12] proposed an I/O efficient
algorithm to maintain the k-truss community in the case of
dynamic graphs. Given that the prior research did not address
the specialized maintenance of the kmax-truss, we stand as the
first to implement I/O efficient maintenance of the kmax-truss.
I/O-Efficient Graph Algorithm. I/O-efficient graph algo-
rithms have been an active research area in recent years.
There have been several proposals for I/O-efficient graph
algorithms for a variety of graph problems, such as core
decomposition [39] [15], triangle enumeration problem [40],
truss decomposition [11], ECC graph decomposition problem
[41], strong connected components computation [42], [43],
diversified top-k clique search problem [44], c-Approximate
Nearest Neighbor Search in High-dimensional Space [45].

VII. CONCLUSIONS

In this paper, we address the problem of computing the
kmax-truss on massive graphs that cannot be fully accom-
modated in the main memory. We propose an I/O efficient
algorithm with a memory usage of O(n) and explore two
optimization strategies to further reduce the I/O and CPU
costs. As real-world graphs are subject to dynamic changes, we
also develop an I/O-efficient kmax-truss maintenance algorithm
tailored for dynamic graphs. Through a comprehensive evalu-
ation involving 168 real-world graphs and 3 synthetic graphs,
the kmax tend to be notably smaller than the degeneracy.
Experimental results demonstrate that our algorithms can be
implemented two orders of magnitude faster than the state-
of-the-art approaches in terms of both kmax-truss computation
and maintenance.
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